Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696599

RESUMEN

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Asunto(s)
Amígdala del Cerebelo , Imagen por Resonancia Magnética , Corteza Visual , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Masculino , Femenino , Lactante , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiopatología , Corteza Visual/crecimiento & desarrollo , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Predisposición Genética a la Enfermedad/genética
2.
Commun Biol ; 7(1): 485, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649483

RESUMEN

Converging evidence implicates disrupted brain connectivity in autism spectrum disorder (ASD); however, the mechanisms linking altered connectivity early in development to the emergence of ASD symptomatology remain poorly understood. Here we examined whether atypicalities in the Salience Network - an early-emerging neural network involved in orienting attention to the most salient aspects of one's internal and external environment - may predict the development of ASD symptoms such as reduced social attention and atypical sensory processing. Six-week-old infants at high likelihood of developing ASD based on family history exhibited stronger Salience Network connectivity with sensorimotor regions; infants at typical likelihood of developing ASD demonstrated stronger Salience Network connectivity with prefrontal regions involved in social attention. Infants with higher connectivity with sensorimotor regions had lower connectivity with prefrontal regions, suggesting a direct tradeoff between attention to basic sensory versus socially-relevant information. Early alterations in Salience Network connectivity predicted subsequent ASD symptomatology, providing a plausible mechanistic account for the unfolding of atypical developmental trajectories associated with vulnerability to ASD.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Lactante , Masculino , Femenino , Trastorno del Espectro Autista/fisiopatología , Imagen por Resonancia Magnética , Red Nerviosa/fisiopatología , Atención/fisiología , Encéfalo/fisiopatología , Encéfalo/crecimiento & desarrollo , Vías Nerviosas/fisiopatología
3.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352542

RESUMEN

Background: Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods: A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results: We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions: Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.

4.
Cereb Cortex ; 33(19): 10367-10379, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37585708

RESUMEN

Prior work has shown that different functional brain networks exhibit different maturation rates, but little is known about whether and how different brain areas may differ in the exact shape of longitudinal functional connectivity growth trajectories during infancy. We used resting-state functional magnetic resonance imaging (fMRI) during natural sleep to characterize developmental trajectories of different regions using a longitudinal cohort of infants at 3 weeks (neonate), 1 year, and 2 years of age (n = 90; all with usable data at three time points). A novel whole brain heatmap analysis was performed with four mixed-effect models to determine the best fit of age-related changes for each functional connection: (i) growth effects: positive-linear-age, (ii) emergent effects: positive-log-age, (iii) pruning effects: negative-quadratic-age, and (iv) transient effects: positive-quadratic-age. Our results revealed that emergent (logarithmic) effects dominated developmental trajectory patterns, but significant pruning and transient effects were also observed, particularly in connections centered on inferior frontal and anterior cingulate areas that support social learning and conflict monitoring. Overall, unique global distribution patterns were observed for each growth model indicating that developmental trajectories for different connections are heterogeneous. All models showed significant effects concentrated in association areas, highlighting the dominance of higher-order social/cognitive development during the first 2 years of life.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Recién Nacido , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Encéfalo , Cognición , Giro del Cíngulo , Conectoma/métodos
5.
Dev Cogn Neurosci ; 60: 101235, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36966646

RESUMEN

Sex differences in behavior have been reported from infancy through adulthood, but little is known about sex effects on functional circuitry in early infancy. Moreover, the relationship between early sex effects on the functional architecture of the brain and later behavioral performance remains to be elucidated. In this study, we used resting-state fMRI and a novel heatmap analysis to examine sex differences in functional connectivity with cross-sectional and longitudinal mixed models in a large cohort of infants (n = 319 neonates, 1-, and 2-year-olds). An adult dataset (n = 92) was also included for comparison. We investigated the relationship between sex differences in functional circuitry and later measures of language (collected in 1- and 2-year-olds) as well as indices of anxiety, executive function, and intelligence (collected in 4-year-olds). Brain areas showing the most significant sex differences were age-specific across infancy, with two temporal regions demonstrating consistent differences. Measures of functional connectivity showing sex differences in infancy were significantly associated with subsequent behavioral scores of language, executive function, and intelligence. Our findings provide insights into the effects of sex on dynamic neurodevelopmental trajectories during infancy and lay an important foundation for understanding the mechanisms underlying sex differences in health and disease.


Asunto(s)
Encéfalo , Caracteres Sexuales , Lactante , Recién Nacido , Adulto , Humanos , Masculino , Femenino , Preescolar , Estudios Transversales , Lóbulo Temporal , Mapeo Encefálico , Imagen por Resonancia Magnética , Vías Nerviosas
6.
J Neurosci ; 42(22): 4555-4566, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35552232

RESUMEN

Altered functional connectivity has been reported in infants with prenatal exposure to opioids, which significantly interrupts and influences endogenous neurotransmitter/receptor signaling during fetal programming. Better birth outcomes and long-term developmental outcomes are associated with medication for opioid use disorder (MOUD) during pregnancy, but the neural mechanisms underlying these benefits are largely unknown. We aimed to characterize effects of prenatal opioid/other drug exposure (PODE) and the neural basis for the reported beneficial effects of MOUD by examining neonatal brain functional organization. A cohort of 109 human newborns, 42 PODE, 39 with prenatal exposure to drugs excluding opioids (PDE), 28 drug-free controls (males and females) underwent resting-state fMRI at 2 weeks of age. To examine neural effects of MOUD, PODE infants were separated into subgroups based on whether mothers received MOUD (n = 31) or no treatment (n = 11). A novel heatmap analysis was designed to characterize PODE-associated functional connectivity alterations and MOUD-related effects, and permutation testing identified regions of interest with significant effects. PODE neonates showed alterations beyond those associated with PDE, particularly in reward-related frontal-sensory connectivity. MOUD was associated with a significant reduction of PODE-related alterations in key regions of endogenous opioid pathways including limbic and frontal connections. However, significant residual effects in limbic and subcortical circuitry were observed. These findings confirm altered brain functional organization associated with PODE. Importantly, widespread normalization effects associated with MOUD reveal, for the first time, the potential brain basis of the beneficial effects of MOUD on the developing brain and underscore the importance of this treatment intervention for better developmental outcomes.SIGNIFICANCE STATEMENT This is the first study to reveal the potential neural mechanisms underlying the beneficial effects on the neonate brain associated with MOUD during pregnancy. We identified both normalization and residual effects of MOUD on brain functional architecture by directly comparing neonates prenatally exposed to opioids with MOUD and those exposed to opioids but without MOUD. Our findings confirm altered brain functional organization associated with prenatal opioid exposure and demonstrate that although significant residual effects remain in reward circuitry, MOUD confers significant normalization effects on functional connectivity of regions associated with socioemotional development and reward processing. Together, our results highlight the importance of MOUD intervention for better neurodevelopmental outcomes.


Asunto(s)
Trastornos Relacionados con Opioides , Efectos Tardíos de la Exposición Prenatal , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Trastornos Relacionados con Opioides/diagnóstico por imagen , Trastornos Relacionados con Opioides/tratamiento farmacológico , Embarazo , Efectos Tardíos de la Exposición Prenatal/diagnóstico por imagen
7.
J Child Psychol Psychiatry ; 63(9): 1002-1016, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34882790

RESUMEN

BACKGROUND: While the cerebellum is traditionally known for its role in sensorimotor control, emerging research shows that particular subregions, such as right Crus I (RCrusI), support language and social processing. Indeed, cerebellar atypicalities are commonly reported in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by socio-communicative impairments. However, the cerebellum's contribution to early socio-communicative development remains virtually unknown. METHODS: Here, we characterized functional connectivity within cerebro-cerebellar networks implicated in language/social functions in 9-month-old infants who exhibit distinct 3-year socio-communicative developmental profiles. We employed a data-driven clustering approach to stratify our sample of infants at high (n = 82) and low (n = 37) familial risk for ASD into three cohorts-Delayed, Late-Blooming, and Typical-who showed unique socio-communicative trajectories. We then compared the cohorts on indices of language and social development. Seed-based functional connectivity analyses with RCrusI were conducted on infants with fMRI data (n = 66). Cohorts were compared on connectivity estimates from a-priori regions, selected on the basis of reported coactivation with RCrusI during language/social tasks. RESULTS: The three trajectory-based cohorts broadly differed in social communication development, as evidenced by robust differences on numerous indices of language and social skills. Importantly, at 9 months, the cohorts showed striking differences in cerebro-cerebellar circuits implicated in language/social functions. For all regions examined, the Delayed cohort exhibited significantly weaker RCrusI connectivity compared to both the Late-Blooming and Typical cohorts, with no significant differences between the latter cohorts. CONCLUSIONS: We show that hypoconnectivity within distinct cerebro-cerebellar networks in infancy predicts altered socio-communicative development before delays overtly manifest, which may be relevant for early detection and intervention. As the cerebellum is implicated in prediction, our findings point to probabilistic learning as a potential intermediary mechanism that may be disrupted in infancy, cascading into alterations in social communication.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Comunicación , Humanos , Lactante , Imagen por Resonancia Magnética
8.
Dev Cogn Neurosci ; 50: 100976, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174513

RESUMEN

Different functional networks exhibit distinct longitudinal trajectories throughout development, but the timeline of the dynamics of functional connectivity across the whole brain remains to be elucidated. Here we used resting-state fMRI to investigate the development of voxel-level changes in functional connectivity across the first six years of life. Globally, we found that developmental changes in functional connectivity are nonlinear with more changes during the first postnatal year than the second, followed by most significant changes from ages 2-4 and from ages 4-6. However, the overall global difference observed between the first and second year appears to have been driven by girls. Limbic and subcortical areas consistently demonstrated the most substantial changes, whereas primary sensory areas were the most stable. These patterns were consistent in full-term and preterm subgroups. Validation on randomly divided subsamples as well as in an independent cross-sectional sample revealed global patterns consistent with the main results. Overall, the derived developmental heatmaps reveal novel dynamics underlying functional circuit development during the first 6 years of life.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Mapeo Encefálico , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Vías Nerviosas
9.
Cereb Cortex ; 31(9): 4191-4205, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33866373

RESUMEN

Converging evidence from neuroimaging studies has revealed altered connectivity in cortical-subcortical networks in youth and adults with autism spectrum disorder (ASD). Comparatively little is known about the development of cortical-subcortical connectivity in infancy, before the emergence of overt ASD symptomatology. Here, we examined early functional and structural connectivity of thalamocortical networks in infants at high familial risk for ASD (HR) and low-risk controls (LR). Resting-state functional connectivity and diffusion tensor imaging data were acquired in 52 6-week-old infants. Functional connectivity was examined between 6 cortical seeds-prefrontal, motor, somatosensory, temporal, parietal, and occipital regions-and bilateral thalamus. We found significant thalamic-prefrontal underconnectivity, as well as thalamic-occipital and thalamic-motor overconnectivity in HR infants, relative to LR infants. Subsequent structural connectivity analyses also revealed atypical white matter integrity in thalamic-occipital tracts in HR infants, compared with LR infants. Notably, aberrant connectivity indices at 6 weeks predicted atypical social development between 9 and 36 months of age, as assessed with eye-tracking and diagnostic measures. These findings indicate that thalamocortical connectivity is disrupted at both the functional and structural level in HR infants as early as 6 weeks of age, providing a possible early marker of risk for ASD.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Biomarcadores , Corteza Cerebral/diagnóstico por imagen , Trastornos de la Conducta Infantil/diagnóstico por imagen , Trastornos de la Conducta Infantil/genética , Trastornos de la Conducta Infantil/psicología , Preescolar , Imagen de Difusión Tensora , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Masculino , Desempeño Psicomotor , Medición de Riesgo , Conducta Social , Factores Sociodemográficos
10.
Cortex ; 138: 165-177, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33691225

RESUMEN

The hippocampus is a key limbic region involved in higher-order cognitive processes including learning and memory. Although both typical and atypical functional connectivity patterns of the hippocampus have been well-studied in adults, the developmental trajectory of hippocampal connectivity during infancy and how it relates to later working memory performance remains to be elucidated. Here we used resting state fMRI (rsfMRI) during natural sleep to examine the longitudinal development of hippocampal functional connectivity using a large cohort (N = 202) of infants at 3 weeks (neonate), 1 year, and 2 years of age. Next, we used multivariate modeling to investigate the relationship between both cross-sectional and longitudinal growth in hippocampal connectivity and 4-year working memory outcome. Results showed robust local functional connectivity of the hippocampus in neonates with nearby limbic and subcortical regions, with dramatic maturation and increasing connectivity with key default mode network (DMN) regions resulting in adult-like topology of the hippocampal functional connectivity by the end of the first year. This pattern was stabilized and further consolidated by 2 years of age. Importantly, cross-sectional and longitudinal measures of hippocampal connectivity in the first year predicted subsequent behavioral measures of working memory at 4 years of age. Taken together, our findings provide insight into the development of hippocampal functional circuits underlying working memory during this early critical period.


Asunto(s)
Cognición , Memoria a Corto Plazo , Adulto , Estudios Transversales , Hipocampo/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética
11.
Dev Sci ; 24(4): e13078, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368921

RESUMEN

Word segmentation is a fundamental aspect of language learning, since identification of word boundaries in continuous speech must occur before the acquisition of word meanings can take place. We previously used functional magnetic resonance imaging (fMRI) to show that youth with autism spectrum disorder (ASD) are less sensitive to statistical and speech cues that guide implicit word segmentation. However, little is known about the neural mechanisms underlying this process during infancy and how this may be associated with ASD risk. Here, we examined early neural signatures of language-related learning in 9-month-old infants at high (HR) and low familial risk (LR) for ASD. During natural sleep, infants underwent fMRI while passively listening to three speech streams containing strong statistical and prosodic cues, strong statistical cues only, or minimal statistical cues to word boundaries. Compared to HR infants, LR infants showed greater activity in the left amygdala for the speech stream containing statistical and prosodic cues. While listening to this same speech stream, LR infants also showed more learning-related signal increases in left temporal regions as well as increasing functional connectivity between bilateral primary auditory cortex and right anterior insula. Importantly, learning-related signal increases at 9 months positively correlated with expressive language outcome at 36 months in both groups. In the HR group, greater signal increases were additionally associated with less severe ASD symptomatology at 36 months. These findings suggest that early differences in the neural networks underlying language learning may predict subsequent language development and altered trajectories associated with ASD risk.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Percepción del Habla , Adolescente , Humanos , Lactante , Lenguaje , Desarrollo del Lenguaje , Habla
12.
Dev Cogn Neurosci ; 45: 100814, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32658762

RESUMEN

Prior studies have demonstrated that infants and toddlers who later go on to develop autism spectrum disorder (ASD) show atypical functional connectivity as well as altered neural processing of language and other auditory stimuli, but the timeline underlying the emergence of these altered developmental trajectories is still unclear. Here we used resting-state fMRI (rsfMRI) during natural sleep to examine the longitudinal development of functional connectivity in language-related networks from 1.5 to 9 months of age. We found that functional connectivity of networks that underlie the integration of sensory and motor representations, which is crucial for language development, is disrupted in infants at high familial risk (HR) for developing ASD as early as 1.5 months of age. By 9 months of age, HR infants showed hyperconnectivity between auditory and somatosensory regions whereas low risk (LR) infants displayed greater intrahemispheric connectivity between auditory cortex and higher-order temporal regions as well as the hippocampus. Furthermore, while LR infants showed robust changes in functional connectivity during the first year of life with increasing long-range connectivity accompanied by decreasing short-range connectivity over time, HR infants displayed limited developmental changes. Our findings demonstrate that early disruptions in the development of language-related network connectivity may provide an early marker for the later emergence of ASD symptomatology.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Predisposición Genética a la Enfermedad/genética , Desarrollo del Lenguaje , Imagen por Resonancia Magnética/métodos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Riesgo
13.
Front Psychiatry ; 11: 343, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390890

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by lack of attention to social cues in the environment, including speech. Hypersensitivity to sensory stimuli, such as loud noises, is also extremely common in youth with ASD. While a link between sensory hypersensitivity and impaired social functioning has been hypothesized, very little is known about the neural mechanisms whereby exposure to distracting sensory stimuli may interfere with the ability to direct attention to socially-relevant information. Here, we used functional magnetic resonance imaging (fMRI) in youth with and without ASD (N=54, age range 8-18 years) to (1) examine brain responses during presentation of brief social interactions (i.e., two-people conversations) shrouded in ecologically-valid environmental noises, and (2) assess how brain activity during encoding might relate to later accuracy in identifying what was heard. During exposure to conversation-in-noise (vs. conversation or noise alone), both neurotypical youth and youth with ASD showed robust activation of canonical language networks. However, the extent to which youth with ASD activated temporal language regions, including voice-selective cortex (i.e., posterior superior temporal sulcus), predicted later discriminative accuracy in identifying what was heard. Further, relative to neurotypical youth, ASD youth showed significantly greater activity in left-hemisphere speech-processing cortex (i.e., angular gyrus) while listening to conversation-in-noise (vs. conversation or noise alone). Notably, in youth with ASD, increased activity in this region was associated with higher social motivation and better social cognition measures. This heightened activity in voice-selective/speech-processing regions may serve as a compensatory mechanism allowing youth with ASD to hone in on the conversations they heard in the context of non-social distracting stimuli. These findings further suggest that focusing on social and non-social stimuli simultaneously may be more challenging for youth with ASD requiring the recruitment of additional neural resources to encode socially-relevant information.

14.
Am J Psychiatry ; 176(12): 1010-1020, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31230465

RESUMEN

OBJECTIVE: Sensory overresponsivity (SOR), an atypical negative reaction to sensory stimuli, is highly prevalent in autism spectrum disorder (ASD). Previous work has related SOR to increased brain response in sensory-limbic regions. This study investigated where these atypical responses fall in three fundamental stages of sensory processing: arousal (i.e., initial response), habituation (i.e., change in response over time), and generalization of response to novel stimuli. Different areas of atypical response would require distinct intervention approaches. METHODS: Functional MRI was used to examine these patterns of neural habituation to two sets of similar mildly aversive auditory and tactile stimuli in 42 high-functioning children and adolescents with ASD (21 with high levels of SOR and 21 with low levels of SOR) and 27 age-matched typically developing youths (ages 8-17). The relationship between SOR and change in amygdala-prefrontal functional connectivity across the sensory stimulation was also examined. RESULTS: Across repeated sensory stimulation, high-SOR participants with ASD showed reduced ability to maintain habituation in the amygdala and relevant sensory cortices and to maintain inhibition of irrelevant sensory cortices. These results indicate that sensory habituation is a dynamic, time-varying process dependent on sustained regulation across time, which is a particular deficit in high-SOR participants with ASD. However, low-SOR participants with ASD also showed distinct, nontypical neural response patterns, including reduced responsiveness to novel but similar stimuli and increases in prefrontal-amygdala regulation across the sensory exposure. CONCLUSIONS: The results suggest that all children with autism have atypical brain responses to sensory stimuli, but whether they express atypical behavioral responses depends on top-down regulatory mechanisms. Results are discussed in terms of targeted intervention approaches.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Sensibilización del Sistema Nervioso Central/fisiología , Generalización Psicológica/fisiología , Habituación Psicofisiológica/fisiología , Estimulación Acústica , Adolescente , Amígdala del Cerebelo/fisiopatología , Nivel de Alerta , Estudios de Casos y Controles , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/fisiopatología , Tacto
15.
Dev Sci ; 22(3): e12768, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30372577

RESUMEN

Altered structural connectivity has been identified as a possible biomarker of autism spectrum disorder (ASD) risk in the developing brain. Core features of ASD include impaired social communication and early language delay. Thus, examining white matter tracts associated with language may lend further insight into early signs of ASD risk and the mechanisms that underlie language impairments associated with the disorder. Evidence of altered structural connectivity has previously been detected in 6-month-old infants at high familial risk for developing ASD. However, as language processing begins in utero, differences in structural connectivity between language regions may be present in the early infant brain shortly after birth. Here we investigated key white matter pathways of the dorsal language network in 6-week-old infants at high (HR) and low (LR) risk for ASD to identify atypicalities in structural connectivity that may predict altered developmental trajectories prior to overt language delays and the onset of ASD symptomatology. Compared to HR infants, LR infants showed higher fractional anisotropy (FA) in the left superior longitudinal fasciculus (SLF); in contrast, in the right SLF, HR infants showed higher FA than LR infants. Additionally, HR infants showed more rightward lateralization of the SLF. Across both groups, measures of FA and lateralization of these pathways at 6 weeks of age were related to later language development at 18 months of age as well as ASD symptomatology at 36 months of age. These findings indicate that early differences in the structure of language pathways may provide an early predictor of future language development and ASD risk.


Asunto(s)
Trastorno del Espectro Autista , Lateralidad Funcional/fisiología , Trastornos del Desarrollo del Lenguaje , Red Nerviosa/fisiología , Encéfalo/fisiología , Imagen de Difusión Tensora , Susceptibilidad a Enfermedades , Femenino , Humanos , Lactante , Lenguaje , Masculino , Riesgo , Sustancia Blanca
16.
Biomed Opt Express ; 6(1): 23-31, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25657871

RESUMEN

Compared to deep brain electrical stimulation, which has been applied to treating pathological brain diseases, little work has been done on the effect of deep brain light stimulation. A fiber-coupled laser stimulator at 840 nm wavelength and 130 Hz pulse repetition rate is developed in this work for deep brain light stimulation in a rat model. Concentration changes in glutamate and dopamine in the striatum are observed using a microdialysis probe when the subthalamic nucleus (STN) is stimulated at various optical power levels. Experimental results show that light stimulation causes the concentration of glutamate to decrease while that of dopamine is increased. This suggests that deep brain light stimulation of the STN is a promising therapeutic strategy for dopamine-related diseases such as Parkinson's disease. The stimulator developed for this work is useful for deep brain light stimulation in biomedical research.

17.
J Comp Neurol ; 523(10): 1443-60, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25631988

RESUMEN

High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular ß auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.


Asunto(s)
Canales de Calcio/metabolismo , Neuronas/metabolismo , Retina/citología , Retina/metabolismo , Animales , Canales de Calcio/genética , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/clasificación , Ratas , Ratas Sprague-Dawley , Vías Visuales/metabolismo
18.
Vision Res ; 102: 80-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25111311

RESUMEN

Spatiotemporal interpolation (STI) refers to perception of complete objects from fragmentary information across gaps in both space and time. It differs from static interpolation in that requirements for interpolation are not met in any static frame. It has been found that STI produced objective performance advantages in a shape discrimination paradigm for both illusory and occluded objects when contours met conditions of spatiotemporal relatability. Here we report psychophysical studies testing whether spatiotemporal interpolation allows recovery of metric properties of objects. Observers viewed virtual triangles specified only by sequential partial occlusions of background elements by their vertices (the STI condition) and made forced choice judgments of the object's size relative to a reference standard. We found that length could often be accurately recovered for conditions where fragments were relatable and formed illusory triangles. In the first control condition, three moving dots located at the vertices provided the same spatial and timing information as the virtual object in the STI condition but did not induce perception of interpolated contours or a coherent object. In the second control condition oriented line segments were added to the dots and mid-points between the dots in a way that did not induce perception of interpolated contours. Control stimuli did not lead to accurate size judgments. We conclude that spatiotemporal interpolation can produce representations, from fragmentary information, of metric properties in addition to shape.


Asunto(s)
Percepción de Forma/fisiología , Percepción de Cercanía/fisiología , Adulto , Análisis de Varianza , Humanos , Enmascaramiento Perceptual/fisiología , Estimulación Luminosa/métodos , Percepción del Tamaño/fisiología
19.
J Comp Neurol ; 521(11): 2486-501, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23296739

RESUMEN

High-voltage activated Ca channels participate in multiple cellular functions, including transmitter release, excitation, and gene transcription. Ca channels are heteromeric proteins consisting of a pore-forming α(1) subunit and auxiliary α(2)δ and ß subunits. Although there are reports of α(2)δ(4) subunit mRNA in the mouse retina and localization of the α(2)δ(4) subunit immunoreactivity to salamander photoreceptor terminals, there is a limited overall understanding of its expression and localization in the retina. α(2)δ(4) subunit expression and distribution in the mouse and rat retina were evaluated by using reverse transcriptase polymerase chain reaction, western blot, and immunohistochemistry with specific primers and a well-characterized antibody to the α(2)δ(4) subunit. α(2)δ(4) subunit mRNA and protein are present in mouse and rat retina, brain, and liver homogenates. Immunostaining for the α(2)δ(4) subunit is mainly localized to Müller cell processes and endfeet, photoreceptor terminals, and photoreceptor outer segments. This subunit is also expressed in a few displaced ganglion cells and bipolar cell dendrites. These findings suggest that the α(2)δ(4) subunit participates in the modulation of L-type Ca(2+) current regulating neurotransmitter release from photoreceptor terminals and Ca(2+)-dependent signaling pathways in bipolar and Müller cells.


Asunto(s)
Canales de Calcio/biosíntesis , Retina/metabolismo , Animales , Western Blotting , Química Encefálica/fisiología , Dendritas/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Células Fotorreceptoras de Vertebrados/fisiología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...